# Matrix Analysis Horn Homework Helper

### 3 May 2017

Markov chains and card shuffling

riffle_sim.m: MATLAB demo of riffle shuffling

riffle.m: MATLAB code by Jonsson and Trefethen giving the transition matrix for the riffle shuffle

### 1 May 2017

Nonnegative matrices.

The Perron-Frobenium Theorem

Intro to Markov chains

### 28 April 2017

Positive matrices.

If $A>0$, then $\rho(A)\in\sigma(A)$ only has $1\times 1$ Jordan blocks.

If $A>0$, then $\rho(A)\in\sigma(A)$ is a simple eigenvalue.

If $A>0$ and $Ay = \lambda y$ with $y\ge 0$, then $\lambda=\rho(A)$ and $y>0$.

### 26 April 2017

Positive matrices.

If $A>0$ and $A x = \lambda x$ with $|\lambda|=\rho(A)$, then $|x|>0$.

If $A>0$ and $A x = \lambda x$ with $|\lambda|=\rho(A)$, then $\lambda=\rho(A)$.

### 24 April 2017

Intro to Markov Chains

Intro to positive matrices

If $A>0$, then $\rho(A)$ is an eigenvalue

### 20 April 2017

Bounds on $\|f(A)\|$ using eigenvalues and eigenvectors, numerical range, pseudospectra

### 18 April 2017

Pseudospectra and eigenvalue conditioning

Bauer-Fike theorems, eigenvalue condition numbers.

### 17 April 2017

Pseudospectra

Download EigTool from GitHub.

Notes on pseudospectra (work in progress): chapter5.pdf (updated 18 April).

### 14 April 2017

The derivative of an eigenvalue for diagonalizable matrices

The eigenvalues of a Jordan block with a perturbed corner entry

Notes on Gerschgorin's Theorem: chapter5.pdf (updated 18 April).

### 12 April 2017

Properties of the numerical range, $W(A)$

Johnson's algorithm for approximating the boundary of $W(A)$

### 10 April 2017

The numerical range (field of values) of matrix and its connection to $\|e^{tA}\|$**To do:**hw5.pdf, Problem Set 5 is due on Tuesday, 18 April (5pm).

### 7 April 2017

Transient growth in linear dynamical systems: cancellation effects

### 5 April 2017

Asymptotic stability of solutions to $x'(t) = A x(t)$

Potential for transient growth and sensitivity of the eigenvalues of $A$

### 3 April 2017

Functions of matrices: properties of the exponential of a matrix

### 31 March 2017

Functions of matrices: the exponential of a matrix

### 29 March 2017

Functions of matrices: three definitions

Some course notes: chapter4.pdf (updated 17 April).

### 27 March 2017

Singular value potpourri:

- Schatten $p$ norms: $\|A\|_{S-p} = (s_1^p + \cdots + s_r^p)^{1/p}$

- Singular value inequalities, e.g. $s_{j+k-1}(A+B) \le s_j(A)+s_k(B)$.**To do:**hw4.pdf, Problem Set 4 is due on Tuesday, 4 April (5pm).

### 22 March 2017

Using the SVD to find the minimal norm solutions to $Ax=b$ and $\min_x \|Ax-b\|$

The Moore-Penrose pseudoinverse

See Section 3.2 of the course notes: chapter3.pdf (updated 1 April).

### 21 March 2017

(Empirical) Principal Component Analysis

### 20 March 2017

Optimal low-rank approximations from the SVD

Introduction to Principal Component Analysis

Some course notes: chapter2.pdf (updated 1 April).

Some course notes: chapter3.pdf (updated 1 April).

### 17 March 2017

Three flavors of the SVD:

- the dyadic decomposition $A = \sum_{j=1}^r s_j^{} u_j^{ } v_j^*$;

- the skinny SVD $A = U\Sigma V^*$ with $\Sigma$ square;

- the full SVD $A = U\Sigma V^*$ with $U$ and $V$ both unitary.

The polar decomposition of a square matrix: $A = H Q$ where $H=U\Sigma U^*$ is positive semidefinite and $Q=UV^*$ is unitary.

### 15 March 2017

Introduction to the singular value decomposition (SVD)

The matrix norm equals the largest singular value: $\|A\| = s_1$.

### 13 March 2017

Postive semi-definite matrices have unique $k$th roots: $A^{1/k} = \sum_{j=1}^n +(\lambda_j)^{1/k} u_j^{} u_j^*$.

### 27 February 2017

Congruent matrices, Sylvester's Law of Inertia, spectrum slicing

No class on March 1 and 3 (instructor traveling). Make-up lectures will be offered after Spring Break.**To do:**project.pdf. Start thinking about your class project; select by 23 March.

### 24 February 2017

Section 2.4: Two examples illustrating the scarcity of double eigenvalues

Eigenvalues of Jacobi matrices

Eigenvalues of parameterized Hermitian systems

avoid_ex0.m, avoid_ex1.m, avoid_ex2.m: MATLAB demos showing eigenvalue avoidance

### 22 February 2017

Section 2.3: Hermitian matrices

Courant--Fischer characterization of eigenvalues of Hermitian matrices

Some course notes: chapter2.pdf (updated 1 April).

### 20 February 2017

Section 2.2: Cauchy Interlacing Theorem for Hermitian matrices

Some course notes: chapter2.pdf (updated 1 April).

### 17 February 2017

Section 2.1: Variational characterization of eigenvalues of Hermitian matrices.

Solutions to Problem Set 2: sol2.pdf**To do:**hwp1.pdf, Pledged Problem Set 1 is due on Friday, 24 February (5pm).

### 15 February 2017

Section 1.8: The Jordan Canonical Form

Jordan form clean-up: algebraic and geometric multiplicity; why we never compute the Jordan form

jordex1.m, jordex2.m: Try computing the Jordan form of these matrices...

Golub and Wilkinson, Ill-Conditioned Eigensystems and the Computation of the Jordan Canonical Form, 1976.

### 13 February 2017

Section 1.8: The Jordan Canonical Form

Derivation of the Jordan form: second half of proof ($\rho \ne 0$)

Fletcher and Sorensen, An Algorithmic Derivation of the Jordan Canonical Form, 1983.

Some course notes: chapter1.pdf (updated 29 March).

### 10 February 2017

Section 1.8: The Jordan Canonical Form

Derivation of the Jordan form: first half of proof ($\rho = 0$)

Fletcher and Sorensen, An Algorithmic Derivation of the Jordan Canonical Form, 1983.

Some course notes: chapter1.pdf (updated 29 March).

### 8 February 2017

Section 1.8: The Jordan Canonical Form

Spectral projectors and nilpotents: $P_j = V_j \widehat{V}_j^*$ and $D_j = V_j R_j \widehat{V}_j^*$

Spectral representation $A = \sum \lambda_j P_j + D_j$.

### 6 February 2017

Section 1.8: The Jordan Canonical Form

Block diagonalization: $A = V {\rm diag}(T_1, \ldots, T_p) V^{-1}$.

Fletcher and Sorensen, An Algorithmic Derivation of the Jordan Canonical Form, 1983.

Solutions to Problem Set 1: sol1.pdf**To do:**hw2.pdf, Problem Set 2 is due on Tuesday, 14 February (5pm).

### 3 February 2017

Section 1.8: The Jordan Canonical Form

Theorem: The Sylvester equation $AX-XB=C$ has a unique solution if and only if $\sigma(A)\cap\sigma(B) = \emptyset$.

Proof: The Bartels-Stewart algorithm.

### 1 February 2017

Section 1.7: Damped systems in mechanics

shm.m, shmeig.m: MATLAB demos for the damped pendulum

### 30 January 2017

Section 1.4: Reduction to triangular form (Schur decomposition)

Section 1.5: Spectral Theorem for Hermitian matrices

schur_proof.m: MATLAB implementation of the proof of the Schur decomposition

Wikipedia page on Issai Schur (1875-1841)

### 27 January 2017

Some course notes: chapter1.pdf (updated 29 March).

Section 1.3: The resolvent $R(z) := (zI-A)^{-1}$ and the existence of eigenvalues

Wikipedia page on Liouville's Theorem

### 25 January 2017

Some course notes: chapter1.pdf (updated 29 March).

Section 1.3: Proof of the Neumann series for inverting $I-E$ when $\|E\|

### 23 January 2017

Note: Thursday office hours have moved to 1:30-3pm.

Some course notes: chapter1.pdf (updated 29 March).

Section 1.1: Special matrices: Hermitian, unitary, subunitary, projectors

Section 1.2: Eigenvalues in mechanics

pendulum_demo.m: MATLAB demo of the $n$ modes of an $n$ mass pendulum.

### 20 January 2017

Some course notes: chapter1.pdf (updated 29 March).

Section 1.1: Vector norm, Cauchy-Schwarz, Triangle inequality, induced matrix norm

A good demo: See Cleve Moler's blog post about "eigshow"

### 18 January 2017

Review of the course contract and discussion of book options.

Some course notes: chapter1.pdf (comments/corrections welcome).

Section 1.1: Notation and preliminaries

Section 1.2: Eigenvalues and eigenvectors [today: overview of diagonalization]

### Project Specification

Posted 27 February 2017. Due 6 May 2017. (Declare your project by 23 March 2017)

project.pdf: speficiation and grading rubric

### Pledged Problem Set 1

Posted 25 April 2017. Due 3 May 2017.

hwp2.pdf: assignment

solp2.pdf: solutions

sept11.m: MATLAB routine for Problem 4

### Problem Set 5

Posted 11 April 2017. Due 18 April 2017. (Late work due 19 April 2017.)

hw5.pdf: assignment

sol5.pdf: solutions

pop.m: MATLAB routine for Problem 4

### Problem Set 4

Posted 28 March 2017. Due 4 April 2017. (Late work due 5 April 2017.)

hw4.pdf: assignment

sol4.pdf: solutions

### Problem Set 3

Posted 15 March 2017. Due 1 April 2017.

hw3.pdf: assignment

cow.mat, planck.mat: MATLAB data files for Problem 4

(cow_A0.csv, cow_B0.csv, planck_A0.csv, planck_B0.csv: same data, but in .csv format for use with other systems)

### Pledged Problem Set 1

Posted 17 February 2017. Due 24 Feburary 2017.

hwp1.pdf: assignment

solp1.pdf: solutions

### Problem Set 2

Posted 6 February 2017. Due 14 Feburary 2017.

hw2.pdf: assignment

sol2.pdf: solutions

### Problem Set 1

Posted 25 January 2017. Due 1 Feburary 2017.

hw1.pdf: assignment

sol1.pdf: solutions

### Full Course Contract

Download a copy of the electronic version of the course contract and tentative schedule.

### Grade Policy

Final course grades will be thus allocated:

50%: standard problem sets (collaboration encouraged)

35%: pledged problem sets (no collaboration permitted)

15%: end-of-semester project

### Honor Code

Virginia Tech's Honor Code applies to all work in this course. Students must uphold the highest ethical standards, abiding by our Honor Code: "As a Hokie, I will conduct myself with honor and integrity at all times. I will not lie, cheat, or steal, nor will I accept the actions of those who do." From the Office for Undergraduate Academic Integrity: "Students enrolled in this course are responsible for abiding by the Honor Code. A student who has doubts about how the Honor Code applies to any assignment is responsible for obtaining specific guidance from the course instructor before submitting the assignment for evaluation. Ignorance of the rules does not exclude any member of the University community from the requirements and expectations of the Honor Code. For additional information about the Honor Code, please visit: www.honorsystem.vt.edu."

### Text Books

While we will not closely follow any single textbook, students are encouraged to obtain one of the following books, each of which covers most of the topics we will cover in the lectures.

- Roger A. Horn and Charles R. Johnson,
*Matrix Analysis*, 2nd ed., Cambridge University Press, 2012.

Virginia Tech students have online access to this text.*This comprehensive reference book is well-suited for those intending to pursue research in matrix theory and related fields.* - Carl Meyer,
*Matrix Analysis and Applied Linear Algebra*, SIAM, 2001.

Available via Virginia Tech library (2 hour reserve): QA188 .M495 2000*This textbook is oriented toward advanced undergraduates/beginning graduate students. Those who need a refresher on basic linear algebra concepts will find this a more approachable text.*

### Supplemental Books

You might enjoy dipping in to a few of these supplmental titles

- Rajendra Bhatia, Matrix Analysis, Springer, 1997.

Virginia Tech students have online access to this text.*This book gives particularly strong coverage to eigenvalue majorization and classical eigenvalue perturbation theory.* - Harry Dym,
*Linear Algebra in Action*, 2nd ed., AMS, 2013.

Available via Virginia Tech library (2 hour reserve): QA184 .D96 2014*This book makes particularly good use of complex analysis as a fundamental tool for matrix analysis.* - Roger A. Horn and Charles R. Johnson,
*Topics in Matrix Analysis*, Cambridge University Press, 1991.

Virginia Tech students have online access to this text.*This companion to their**Matrix Analyis*text provides a detailed treatment of the field of values, Sylvester and Lyapunov equations, and functions of matrices, among other topics. - Peter Lancaster and Miron Tismenetsky,
*Theory of Matrices, with Applications*, 2nd ed., Academic Press, 1985.*Classic text on advanced matrix theory, particularly strong on canonical forms and matrix polynomials.* - Peter Lax,
*Linear Algebra and Its Applications*, Wiley, 2007.*Strong on matrix calculus, avoidance of eigenvalue crossings, abstract normed vector spaces.*

### Accommodations

Any student with special needs or circumstances requiring accommodation in this course is encouraged to contact the instructor during the first week of class, as well as the Dean of Students. We will ensure that these needs are appropriately addressed.

## Multivariable Calculus Assignment Help

Multivariable calculus can be called as the extension of calculus in one variable to calculus in multiple variables. The study of limits and continuity, partial derivatives, multiple-integration and some of the fundamental theorem of calculus in multiple dimensions are some of the key concepts around which most of the problems of calculus revolve. Techniques of multivariable calculus can be applied to curves, surfaces, scalar fields, vector fields and many more.

Multivariable Calculus is an extremely tough subject even at undergraduate level, and the difficulty level rises as you move from undergraduate to graduate to postgraduate level. If you need support in solving the complex multivariable calculus problems then we, Math Assignment Experts are there for you. We provide you with **multivariable calculus homework help,** multivariable calculus assignment help and project Help. Our distinguished team of multivariable tutors also helps students with **multivariable calculus thesis** and Term papers. Our **multivariable calculus online tutoring **is designed where our experts explain you academic concepts in detailed yet simplistic manner.

We are the leading online Mathematics solution provider since last 4 years. What differentiate us from these websites is our unmatched services which has given more than 96% of our students excellent grades. We provide you with:

- Affordable Prices and Secure Payment options for your multivariable calculus assignment help service
- 24*7 Chat and E- Mail support so that you can have the status of your assignment anytime
- 100% plagiarism free quality solution the
- Referencing style for multivariable calculus essay and multivariable calculus dissertation
- Access to multiple literary websites and reports
- Your privacy is guaranteed

Our dedicated multivariable calculus experts are professionals who are PhDs or masters degree holders in mathematics with more than 10 years of experience tutoring and hence they are aware of what is expected from a student at undergraduate, graduate and post graduate level. They not only provide you - online tutoring service but also detailed and logical solutions to your Multivariable Calculus assignments, Multivariable Calculus Term papers and essays. We pride ourselves in delivering the highest quality of online multivariable calculus help and having more than 97% client satisfaction.

Some of the topics in which our team can provide you online** multivariable calculus assignment help**:

Shell Integration

Green's Theorem

Disk Integration

Curvature

Divergence Theorem

Partial Derivative

Jacobian Matrix

Hessian Matrix

Morse Theory

Vector Calculus

Partial Differential Equation

Contour integral and Contour line

Critical point (mathematics)

Differential operator

Directional derivative

Curvilinear coordinates

D'Alembertian operator

Differential form

Double integral

Equipotential surface

Divergence theorem

Euler's theorem on homogeneous functions

Jacobian matrix

Lagrange multiplier

Gradient

Line integral

Frenet–Serret formulas

Gauss's law

Green's theorem

Helmholtz decomposition

Matrix calculus

Exterior derivative

Flux

Hessian matrix

Gabriel's Horn

Stokes' Theorem

Real coordinate space

Isoperimetry

Multiple integral

Saddle point

Harmonic function

Green's identities

Hodge star operator

Inverse function theorem

Solenoidal Lamellar vector field

Newtonian potential

Symmetry of second derivatives

Taylor's theorem

Parametric equation and Parametric surface

Surface integral

Monkey saddle

Total derivative

Partial derivative

Laplacian vector field

## 0 Replies to “Matrix Analysis Horn Homework Helper”